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1.    INTRODUCTION 

Our objective is to provide a more general theoretical basis for 

those methods for solving constrained minimization problems that are 

based on successive unconstrained minimizations of a parametric 

auxiliary function.    In order to do this, we first give basic defining 

properties of a. general auxiliary function and obtain a proof of local 

convergence for the mildly regulated nonconvex problem.    We proceed 

from this general result to develop a family of auxiliary functions by 

giving the general function mere and more structure, eventually being 

led to the general form of the " penalty" functions that conventionally 

have been utilized.    Similarly, the problem structure is increasingly 

specialized and we deal finally with the convex problem.    As expected, 

stronger results are obtained as additional structure is assumed. 

-2- 
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1] This paper is based on material developed in [1] and essentially constitutes 
a generalization of results originally obtained in [5], 
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The problem of interest is the general mathematical 

programming problem 

(A) minimize f(x) 

subject to g,(x) ä 0 

h.(x) = 0 
J 

i  i=l| Z,.,» , p    and 

, j=l,2>...lq   , where   xeE n 

■ 

Since we wish to assume little more than the continuity of 

the problem functions for many of our results, we must account for 

local minima in problem (A).    Even with local minima present, we 

could still take the point of view that only global minima are of 

interest, and concentrate on analyzing what is needed to bring about 

convergence to a global solution.    However, our point of view is tr 

attribute importance to the determination of any local minimum 

objective function value v* of problem (A), and to detenr.ine at least 

one local minimum x* such that  f(x*) = v*.   Global results follow 

as a byproduct of local results in this approach. 

In view of this objective, we must guarantee that a sequence 

of points will be generated converging to any set of local minima 

yielding a given objective function value.    For the techniques that we 

shall develop here, a key i equirement is that, in the interior of a 

specified domain of interest, each such set contains a suitably prescribed 

closed  subset.    In the development given in [5] ,  it is assumed that any 

such set is compact.    V'e shall utilize this assumption, concentrating 

on generating bounded sequences converging to finite local solutions of (A). 

V/e address ourselves to developing methods that generate 

a sequence of points converging to a local solution of (A) by means of 

successive unconstrained minimizations cf a parametrized auxiliary 

function, over a specified sequence    of values of the involved parameters. 

Also, we restrict our attention to auxiliary functions which, under 

■ 
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suitable conditions, converge in value to the value of the objective 

function  f(x)   at a local minirrum of (A).    In our developrr.ent, we are 

less concerned with the forrr of the penalty function and concentrate on 

those properties the function must possess in order to define a con- 

vergent sequential unconstrained minimization scheme.    Our results are 

considerably more general than those obtained previously. 

Particular realizations of sequential unconstrained methods 

in the class we shall develop have been only recently validated,  by 

Parisot [7] for the linear problen ,   by Pietrzykowski TO],   Fiacco and 

IwcCormick [2] ,   [3] ,   [4] , and Pomentale [9] for the convex problem, 

and by Stong [10] , Zangwill [12] and Fiacco and Iv.cCormick [5] for 

nonconvex problems as well.    Iviany of these results, and in particular 

the principal convergence theorems, will be largely subsumed In the 

development following. 

Ln Section 2, we define a generalized auxiliary function ard 

prove that it yields a sequence of local uncorstrained minima whose 

limit points are local solutions of the problem, under mild regulatory 

conditions.    The function is defined in such a manner that,  if the set 

of points satisfying a specified constraint has a nonempty interior, then 

the constraint can be enforced for all points in the minimizing sequence. 

In Section 3, this function is somewhat specialized to yield 

the general forms of "interior-feasible" and "exterior-feasible" 

auxiliary functions.    The convergence theorems for these functions 

follow as immediate corollaries of the abovo general result. 

Further specializations lead to the functions defined and 

developed in [5].    These subsume the class of interior point and 

exterior point "penalty" functions that have conventionally been utilized 

in this approach.    A stronger characterization of convergence is given 
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for these functions, in Section 4. 

For the convex programming problem, the interior and 

exterior penalty functions can be defined to be convex, thereby 

leading to global and dual results.   These were developed in [5] 

and are summarized in Section 5. 

. 
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2.    The Generalized Auxiliary Function for the Mixed .Algorithm 

For convenience, we shall write problem (A) in the form 

(B) minimize   f(x)   subject to   g.{x) 2 o    ,     i = l,2,...,q. 

The following definitions and reeults will be used.    The first 

is a trivial extension of the fact that a continuous function attains 

its minimum on a compact set. 

Lemma 2. 1. 

If F(x) is continuous in the nonempty interior of a compact set 

V and such that possibly F(y) = + <» for y <•; (V-V0), then there 

exists a finite value v and a point * e v 8uch that F(-) = ys minvF(x)> 

Definition. 

A point x* C G s {x Jg.(x) ä 0, i = 1,... , q]  is a local minimum of 

problem (B),  if there exists an open set N such that   x* e N and 

f(x*) = min_   ^(x).    If N can be selected such that   f(x*) = min^f(x), 

x* is referred to as an unconstrained local minimum of (B). 

Otherwise, x* is called a constrained local minimum of (B). 

The lemma following will be used in proving the convergence of 

a minimizing sequence to a prescribed compact set of minima 

yielding a given local minimum value of f(x) in problem (B). 

For significant additional generality, we require the definition 

of an "isolated" set. 

Definition. 

A nonempty set A* c A   is called an isolated set of A if there 

exists a closed set E such that E   3 A* and such that if 

x e (E-A*), then x ^ A. 

'. 
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V/t! asflume continuity of the functions of problem (B) and 

consider aa isolated set A* of local minima  A   yielding a particular 

local minimum value, say  f(x) = v*.    The following result asserts 

that there exists a compact set   S   such that   S   3 A* , and such that 

the set of global  minima of 

(B*) minimize  f(x)   subject to  xeCC]S 

is given by A* . 

Let A = [xlf(x) = v*   and  x   is a local solution of (B)}. 

Lemma 2. 2.    Existence of Compact Perturbation Set. 

If the functions of (B) are continuous and if A* is a 

nonempty compact isolated set ox A, then there exists a 

compact set   S   suchthat   S   3 A*  and, if  x f: COS    and 

minG    sf(x) = f(x) ,    then   x cA* . 

Proof.    B/ assumption there exists a closed set   E   such that 

E   ^ A*   and   x e (E-A*) implies   x ^ A .    Since A*  is compact, it 

4c O follows that there exist compact sets   S,    such that   A    c S. c: E   and 

such that   [S. ]4,A* .    If the conclusion of the lemma is false, then 

minG^ s f(x) = f(xk) < v* , with  xk c G 0 Sk  and   xk ^ A*   for every k. 

Since   A*   is closed and since   {x  } must contain a convergent sub- 
k. k.    _ 

sequence    {x -] »  it follows that  x J -xe A    . 
k. _ 

If  f(x J) < v* = f(x)   for all  j ,   the above implies that   x   is not 

a local minimum of (B),  a contradiction of the definition of  A*.    If 
k. 

f(x J)= v*   for some   j = j    then, by construction of   [S.l , v*   must be 

„j the minimum value of  f(x) in   G (1S^    for  j ^j  .    But since   x   e S^. 
i k i J 

for   k   large enough, this means   x3    is a local solution of (B) with 

I 
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value   v*   for  j   larj'e enough; i. e,, x'C Ar\E  and hence,   x 2 e A* 

for all j   large enough«    Thus, the conclusion follows for this case, also. 

Q. E. D. 

The equivalent problems (A) and (B) can also be formulated as 

(M) minimize   f(x) s. t. xeRriC, 

where   R s [x|g.(x) SO, i = 1,... ,m} and   Q s {x|g.(x) 2: 0, j=m+l,..., q} , 

If there are any equality constraints, we assume these appear among the 

last   q - m constraints (i. e. , they are involved only in defining   C  and 

not in defining   R).    However,    Q   may contain inequality constraints as 

well. 

It is assumed that  R    ^ (f  and   O^   ^.   It is desired to solve 

(M)   by generating a sequence of unconttrained minima of an auxiliary 

function in such a manner that the sequence must   be restricted to   R    , 

but need not be restricted to   Q . 

As throughout, we tacitly assume that  x c E     and the functions 

of problem (M) are continuous.    The generalized auxiliary function is 

defined as follows. 

Defining Properties of   V(x, r, t). 

i)   V(x, r,t) is continuous for   x eR    , for any   r >0   and   t > 0; 

ii)   If   [x  } cR0  and  x    -*y e R - R0, where (|y)| < », then 

limk_iooV(x  ,r, t) = +" for any   r > 0,    t > 0; 

iii)   If {x  1 c R0 , rk > 0  and   t   > 0  for every k, and    (x , r., t ) - 

- (y, 0, +»), with ||y i( < «, then   lim imk V(xk, rk, tk) fa +» if y^ Q, 

2 f(y) otherwise; 

t 
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iv)   If   y eR0n C,  ^ >0   and   ^ > 0   for every k. and (r-.t.)- (0,+<»), 

then   limkwfloV(y,rk,tk) =f(y) . 

Realizations of   V(x, r,t)   follow in the ensuing development. 

With   V(x, r,t)   so defined,   a sequential technique having the 

desired properties can be validated under suitable conditions.    Let 

A s {x|f(x) = v*   and  x   is a local solution of   (M)}. 

Theorem 2.1,    Convergence of V-minima to Local Solutions of (M). 

If the functions of (M)   are continuous,    V(x, r, t) is as above, 
  

R0/0! Q f^ »   R Q C =  R0/^ C ,   A* is a nonempty compact 

isolated set of A,  r,   > 0   and   t,   > 0  for every  k  with 
k k 7 

(r. ,t ) - (0,+«=) , then: (a) there exists a compact set S as 

given in Lemma 2. 2, so that S ^) A* and, for all k large 

enough, the unconstrained minima    [x  }  of   {V(x, r,,t,)}  in 

I 

v 

R H S   exist and every limit point of the uniformly bounded 

sequence   {x  }  is in  A*, and   (b)   V(x ,r. ,t, ) -• v* . 

Proof.    Let   V(x .r. ,t. ) = inf_ y\ c,V(x, r. ,t, ) , where   S   is the 

compact set defined in Lemma 2, 2. Recall that this also means that 

R n 5° 3A*,    Since   A* c R 0 Q   and   R 0 O = R0D Q ,  it follows that 

RO0 S H • 
By property (i),    V(x, r,t) is continuous ir   R   /^) S  for r > 0 

and   t > 0.    By (ii),    V(x, r,t) - +co as   x -y   if  x e R0   and   y € (R-R0), 

for any   r >0, t > 0.    These facts imply that    [x  } c R0^ S.    The fact 

that, for any   r    > 0, t.   >0, x    exists minimizing   V(x, r,,t.)   in the 

compact set   R () S   follows from Lemma 2.1. 

Since   R D S   is compact,    (x  ] mus^ have a convergent 

subsequence which, for convenience,  shall still   »-e denoted by   [x  ]. 

Hence, we   can assume   x    -• y e R D S.    In particular, this also means 

i     ■    ■   -   - ^■^■-^«■e^.r.          ..     . -»■     '■"■'■" 
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\\y0'■! < «,    V'e shall show that   yC'eA* . 

By hypothesis,    R f") Q   is the closure of   R  Q Q   and hence,  by 

the continuity of   f(x),  there exists   x   e R /^| Q Q S   such that 

o k f(x ) S v* + C , any   e > 0 .    By definition of   x    , 

(2.1) V(xk.rk,tk)< V(x0,rk,tk) 

and now property (iv) implies that 

(2. 2) lim infk V(xk, rk,tk) ^ lim infk V(x0
l rkf tk) = f(x0) < v* + e 

for any   e >0 , by suitable choice of   x   . 

o k If   y    (f C   then,  by property (iii),    lim^^ V(x .rk,tk) =+», 

which contradicts (2. 2).    Thus,    y0 e R 0 S 0 Q • 

If   y0 ^ A*   then,  by definition of   S ,  it follows that   f(y0) > v* + X , 

for sonne   \ > 0 .    By property (iii)   this means that 

k o lim inf.   V(x , r, , t. ) ^ f(y ) >   v* + X , which again contradicts (2. 2),  since 

we can select   x   above such that   £ < X .    Consequently, we must have 

o     . * 
y   e A . 

Further,  since    [x   } c R    , x    -• y     and   y    e A    cRII S    ,  this 

also means that for   k   large enough,    x   c R  /^  S   .    Thus,  the   x     are 

uniformly bounded unconstrained minima of   V(x, r,, t.)   in   R  {l S     for k' V 

large k,  and every limit point of    [x   }   is in   A  . 

For part (b ),   since   y   eA* ,  (2.2)   and property (iii) imply that 

(2. 3) v* = f(y0) < lim infk V(xk, r^y < v* + e , 

for any   e > 0 .    Sinnilarly,  (2.1) and properties (iii) and (iv) yield 
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(2.4) v* 5 lim sup^^ V(x , rk, tk) s v* + e 

for any  e >0 .    From (2. 3) and (2. 4), limk-tao V(xK
f rk» tk) = v* . 

Q. E. D. 

The following corollary gives the global result indicated in the 

previous discussion.    It will be apparent that this result follows immediately 

from the theorem and the fact that the set of global minima of (M) must be 

closed under our assumptions on the problem functions.    The second 

corollary is an obvious consequence. 

Corollary 1.    Convergence to Bounded Set of Global Minima. 

Assuming the hypotheses of Theorem 2. 1, if the sat A* of global 

minirr.a of problem (M) is bounded, then the conclusions of the 

theorem hold and the sequence of unconstrained local minima [x  } 

of {V(x, r.,t.)]  in   P. (] S   is such that every limit point is a global 

minimum of (M). 

Corollary 2.    Convergence to Isolated Local Minimum. 

Assuming the hypotheses of Theorem 2. 1,  if A* = [x*} and x* is an 

isolated local minimum of (M), then the conclusions of the theorem 

hold and, furthermore, the sequence of unconstrained local minima 

fxk} of   fV(x,rk,tk)}  in   P. fl S   is such that   [xk}  itself 

converges to x*. 

Before proceeding with the general development, a few interesting 

facts nay be noted about the general auxiliary function that has been 

defined.    Suppose this function has the form   V[f(x), g.(x),... , g (x), r, t] , 

i 
V is once differentiable In  f, g.,... ,g    , and these latter functions are 

o k differentiable in  x,   for   x eR     and any   r >0, t >0 .    Then, If x     is a 

local unconstrained minimum of   V,  denoting the corresponding value of   V 

■ !' - - 
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by   V  ,  it follows that 

iZ- 

af(xk) i31   dg,(xk)      1 

k    k. 

Vg, (xR) = 0 . 

This equation is the same as    7L (x  ,u  ) = 0 , where L is the Lagrangian 

k associated with Problem (M),  providing we assume   9V/öf(x  ) ^ 0   and we 

set 

k     -ÖV/Sg.ix^ 
u    = 

aysf(x ) 

This shows how we can be led to establishing a direct connection between 

the conditions that hold at a local minimum of the penalty function and 

the conditions that hold at a local solution of (M). 

The above also indicates the connection with duality in the convex 

programming problem that will be briefly summarized in Section 5.    If 

V   is convex increasing in the convex function   f   and decreasing in the 

concave functions   g.fr),    i = lf...,q,    then it follows that   V(x, r,t) is 

a convex function in   R    .    If we further assume   hV/M > 0 ,  then it follows 

k    k 
immediately that   (x  ,u  )   is a dual feasible point. 

Thus, the connections between the conditions associated with 

minimization of the penalty function and the optimality and duality 

conditions are apparent simply from the structure of this function,  our 

defining properties having assumed very little concerning its particular 

form. 
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3.    Generalized Interior and Exterior Auxiliary Functions 

Returning to the general development, we wish to be able to solve 

Problem (M) when we require only that   x € R,    or that  x e Q,    i. e. , we 

wish to solve the problems 

M(R) minimize   f(x)   subject tr   x e R, 

and 

M(Q) minimize   f(x)   subject to   x e 0 » 

using an auxiliary function technique analagous to that given above for 

Problem (M). 

The Problems M(R) and M{Q) have the same basic structure, the 

essential difference being that we shall assume   R    i Q   and   Q f ^   (so 

that we may have   C    = ^).    The remaining distinction is procedural:   we 

insist on restricting   x   to   R     in the course of solving   M(R), whereas 

x   need not be restricted to   Q   in the course cf solving   Ivi(C) • 

Note that M   is the same as   M(R)   if   Q = E     and   M   is the same as 

M(C)   if   R = E ,    Since there -ere no restrictions on   R   and   Q   in the 

above development (other than   R    f (^ ,    Q f ^ ), the above convergence 

theorem for Problem (M)   utilizing   V(x, r, t) is valid for   R = E     or 

C = E    .    V'e shall modify the respective definitions of   V(x, r, t)   in that 

we shall associate the parameter   r   with Problem   M(R)   and the 

parameter   t   with Problem   M(Q) . 

V'e are thus led to the auxiliary functions for   M(R)   and   M(Q)   which 

we shall call   U(x, r)   and   T(x,t),   respectively. 

We assume   R    j. ty   and essentially arrive at the defining properties 

of   U(x, r)   by setting   Q = E      and by suppressing   t   in the definition of 

V(x,r,t) . 

 *>^~*—*^~~' ... .      -   ->. am i —» _L 
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Defining Properties of   U(x, r). 

a) U(xl r) is continuous for   x cR , for any  r > 0; 

b) If {xk] CR0   and   xk -* y eR - R0, where ^y,';1 <«, then 

lin-, _<ooU(x , r) = +<» for any   r > 0; 

c) If [x  lcR0,  iV > 0   for every k, and   (x , r. ) - (y, 0), where 

||y(| <».  then   lim infk U(xk, rk) ^ f(y) ; 

d) If   y e R  ,  r,   > 0   for every k, and r.   - 0, then 

lim
k-.»u(y'rk) = f(y)- 

Assuming   P f () ,  setting   R = E     and suppressing   r   in the 

definition of   V(x, r.t), we obtain the defining properties of   T(x,t). 

Defining Properties of   T(x, t), 

A)   T(x,t) is continuous for   x cE  , for any   t > 0; 

E)   If [x  } c En, t.   > 0   for every k, and   (x , t.) -{y,+"), where 

lyjj < »,  then lim infu T(xk,tlj.) f=+^i£y^Qt 

^ f(y) otherwise; 

C)   If   y € C,  t,   > 0   for every   k, and   t.   -+«0, then 

lim
k^CoT(y'tk) = f(y)- 

As direct consequences of these definitions and the previous results, 

we obtain methods for solving   M(R)   and   M{C) • 

Theorem 3. 1.    Convergence of U-Minima to Local Solutions of M{P). 

The convergence theorem for   V(x, r, t) applied to (M) is valid if 

V(x, r,t) is replaced by   U(x, r),  (M) is replaced by   M(R),  C = E", 

and   t   is suppressed ,  in the statement of that theorem. 

Theorem 3.2.    Convergence of T-Minima to Local Solutions of M{Q). 

The convergence theorem for   V(x, r. t)   applied to   (M)   is valid 

if   V(x, r,t) is replaced by   T(x,t),    (M)   is replaced by   M(Q), 

R = E  ,   and r is suppressed,  in the statement of that theorem. f. • 
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The steps in the proofs of these two theorems are precisely the 

same as those in the V-function theorem, with obvious modifications,  on 

making the indicated substitutions. 

4,    Additional Results for General Interior and Exterior Penalty Fnncllnn« 

We obtain a realization of   V(x, r, t) in terms of   U(x, r)   and 

T(x, t)   by defining   V.(x, r,t) H U(x, r) + T(x,t) - f(x).    As required by the 

definition of   V(x, r,t), we assume the problem functions continuous, 

R    ^  ^ i and   Q ^ (^ .    The following result is a direct consequence of 

the defining properties. 

Lemma 4. U    YAx-, r, t) is a V-function (i. e. , a function   V(x, r, t) satisfying 

(i) through (iv) above. ) 

"Penalty" functions used in this approach are usually obtained by 

adding to   f(x)   a "penalty term" which absorbs the effects of the constraints 

of the given problem and the involved parameter.    Towards developing 

these functions as particular realizations of the functions   U(x, r)   and 

T(x,t)   defined above, we define the following.    Assume   R    ^ (j)   and 

Defining Properties of   I(x, r). 

a.)   I(x, r)   is continuous for   x P.R   ,  for any   r >0; 

b,)   If   {x   } <= R     and   x'   -• y c R - R   , where  jjy!j <», then 

V Urn. ^   I(x , r) = +oo for any   r >0 ; 

k o k 
c.)   If   [x   ] C R   ,  r.   >0   for every k, and (x  , r. ) -• (y, 0), where 

i k jjy;, < 08, then   lim infk I(x  , rk) ä 0; 

d.)   If   y € R   ,   r.   > 0   for every k, and r    - 0,  then 

lim.       I(y, r. ) = 0. 
Ik-00    7     k 

-,N-| Defining Properties of 0(x,t). 

n A,)   0(x,t)   continuous for   x P. E  ,  for any   t > 0; 

I ■-      --*~*~^-    M..  I.H      ll.ll«« fl 
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E.)   If   [xk] c En, t.   >0   for every k, and (xk, tk) - (y,+<»), where 

'y' < co,  then   lirr. inf     0(xk, t.)   ( =   +<=° if   y ^ Q 

[ 5   0   otherwise; 

CJ   If   y C O,  t.   > 0   for every k,  and   tk ^ +co» then 

lim.       0(y,t. ) = 0. 

V,rith "U-function" and "T-function" meaning   U(x, r)   and   T(x,t), 

respectively, as defined in the previous section, we obtain the following 

direct consequences. 

Lemma 4.2.    U.(x, r) = f(x) + I(x, r)   is a U-function. 

Lemma r. 3.    T.(x, t)   =f(x)    • 0(x, t) is a T-function. 

The proofs of the lemmas follow immediately from the continuity 

of   f(x)   and the defining properties. 

A further immediate consequence of the three lemmas above is the 

following. 

Corollary 1.    V  (x, r, t) = U^x, r) + TJx, t) - f(x) = f(x) + I(xl r) + 0(x, t) 

is a V-function. 

This provides a realization of the V-function,  associated with Problem 

(M),   in terms of the objective function   f(x) of that problem,  and the 

penalty functions associated with problems   M(R) and lVi(C)   (through 

UJx.r) and T.(xft) above). 

The penalty functions defined in [5]  for the problems   M(R), 

M(Q),  and (h/i) are,   respectively, 

U2(x, r) = f(x) + s(r) I(x) , 

T2(x,t) H f(x) + p(t) 0(x) , 

and V3(x, r,t)      = f(x) + 8(r) I(x) + p(t)   0(x) . 

The penalty functions utilized to date generally subscribe to the 

above forms.    Ve shall summarize the defining properties of 

- 
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8(r)( I(x), p(t), and 0(x).    It follows readily that   s(r)   I(x)   is an I-function 

(satisfies properties (a.) through (d.) above), and   p(t) 0(x) is an 0-function 

(satisfies (A.) through (C.) above). 

Defining Properties of I(x) and s(r) [5], 

1) I(x) is continuous for   x c R  ; 

2) If {xk} c R0 and xk - y e R - R0, then limj^^^^x1*) = +»; 

3) s(r) is a (scalar-valued) function of r, continuous for r >0; 

4) If r, > r- >0, then s(r ) > s(r ) > 0; 

5) If r,   > 0 for every k and r.   -• 0, then lim s(ri,) = 0. 
K k rk-*'» 

Defining Properties of 0(x) and p(t) [5]. 

1 n 
1 )   0(x) continuous for x e E  ; 

21)   0(x) 

3     p(t) is a (scalar-valued) function of t, continuous for i > 0; 

41)   If t2 > tj > 0. then p(t2) > p (tj) > 0; 

5 )   If t,   > 0 for every 1   and t.   -•+»,  then lin^^p^. ) = +00. 

As straightforward consequences of thesr defining properties we 

obtain the following: 

Lemma 4. 4.    lAx, r) = s(r) I(x) is an I-function. 

Lemma 4. 5.    0.(x,t) -p(t) 0(x) is an 0-function. 

In view of the above results, this means that U, is a U-function 

(1. e. ,  satisfies (a) through (d) above),  T? is a T-function (i. e. ,  satisfies 

(A) through (C) above) and V   is a V-function (i. e. ,  satisfies (i) through 

(iv) above. ) 

From this point on, we shall be dealing only with the U?,  T?, and 

V. functions defined above.    For convenience, therefore, we shall revert 

to the notation,  U,  T, and V for these functions. 

ii Mtttmi 
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It is first nnted from the above devciopnient that these penalty 

functions are special cases of the general auxiliary functions defined in 

Sections 2 and 3,  so that the respective convergence theorems apply. 

Additional characterizations of convergence follow as corollaries of these 

theorems, from the particular structure of these functions. 

In the following we assume the conditions of Theorems 3. 1 and 3. 2 

are satisfied. 

V.e know    [x   } cR  0 S     for k larp;e, where 

mfnRn S ^^ rk^ = U^X ' rk^ ' 
O jk 

and   S   is the compact set defined in Lemma 2.2,    Recall that   S   =>A   ,    a 

compact set of local minima associated with the value   f(x) = v*.    Also, 

we know there exists at least one limit point x*   of [x  } ,  and any such 

limit point is in A  ,    The following results show that for   U(x, r)   as 

presently defined, we can assure that the minimizing points yield values 

of f,  U and I that converge monotonically. 

Corollary 1 of Theorem 3.1. 

If   U(x# r) = f(x) + 8(r) I(x), where I(x) and s(r) satisfy properties 

(1) - (5) given above, f(x) is continuous,   [r, }  is a positive strictly 

decreasing null sequence, and roin^ n. c U(x, r. ) = U(x  , r, ) , 

then f(xk) I v* ,  I(xk) f - , where   o-= +» if x* e (R-R0)   and 

\y.] < « if  x* € R0, and   s(rk) I(xk) - 0.    Also,  if  I(x) ^ 0 in 

R0n S ,    then   U(xk, rj i v* . 
k k Proof.    By definition ©f   x ,  U(x , r. ) ^ U(x, r  ) for every 

x e sD R,  so that 

(4. I) f(xk) + s(rk) I(xk) < f(xk+1) + s(rk) I(xk+l), and 

(4. 2) f(xk+1) + 8(rk+1) I{xk+1) < f(xk) + 8(rk+1) I(xk). 

Multiplying the first inequality by   8(r,    .),  the second by s(r. ), 

■ 
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sumrring and rearranging yields 

[8(rk) - 8(rk+1)]f(x
k+1) <   C8(r

k) - 8(r k+1)] f{xk). 

Since r.   > 0   and   r.  4 0   strictly,    8(r ) > s(r.   .)   by definition of   s(r),  so 

k+1 k that  f(x      ) < f(x ).    This, together with (4.1), also implies that 

I(xk+l) ä I(xk). 

Since we also have   f (x) ä v*   for  xeS(/R, we must have 

k    I — k 
f(x ) 4. v ^ v* .    V/e know that at least one limit point of   [x  }  exists, and 

Theorem 3. 2 assures us that limit points of   [x  } must be in A*,  so that 

we must have   v = v*; i. e. ,   f(x ) J, v* . 

The conclusions regarding the convergence of   I(x )   follow from the 

monotonicity shown above and from the properties (1) and (2) of   I(x) . 

By property (c) of the   U   function and by the result for   U(xl r) 

analagous to equation (2.1), it follows that 

k. 
v*   < lim.     U(x J, r,  ) s v* + e j-<» k. 

k. k 
for any   e>0   and any convergent subsequence   {x ^ ]  of   [x  }.    Hence, 

ki k U(x J, r.   ) -• v*.    It follows that   U(x , r, ) -• v* , by the compactness of 

Rf) S   and the fact that at least one convergent subsequence exists. 

From the above results, we obtaui immediately that   s(r. ) I(x  ) -• 0 . 

Finally,  If   I(x) ä 0   in   Ron 5°   , then it follows that 

U(x, r    .) £ U(x, r. )   for   r    > r.., > 0   and any   x e R H S .    This implies 

k+1 k k I U(x      » ri, J - U(x  , r, )   and using the result shown above,    U(x ,T,W V*. 

C. E. D. 
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The analagous results for the   T(x,t) function can be proved in a 

similar manner, and are summarieed as follows. 

Corollary 1 of Theorem 3. 2. 

If   T(x>t) = f(x) + p(t)0(x), where   O(x)   and   p(t)   satisfy properties 

(1 ) - (5 ) given above,    f(x) is continuous,   {t, }  is a pesitive strictly 
je 

increasing unbounded sequence, and min-T^x, t ) = T(x  , t,) , then 

T(xk,tk) | v* , f(xk) f v* , 0{xk)i 0, and   p(tk)0(xk) -0. 

1 

1 
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I 5.  Global and Dual Results for Convex Programming 

For the following development, we utilize the formulation 

(C) minimize f(x)   subject to g.(x) ä 0, i = I,. .. , m. 

Ve shall summarize in this section some of the principal results that hold 

when the interior and exterior penalty function methods are applied to solve 

(C), when this is a convex programming problem.    These methods are 

specialized to take advantage of the convexity assumption,   essentially 

by defining the penalty functions in such a way that these are themse ves 

convex functions.    The theorems given in the previous section are of course 

still valid,  essentially with "local" replaced by "global. "   Furthermore, 

duality results are forthcoming that provide additional information. 

We first discuss the interior point   method.    It is assumed that 

R    =[xjg.(x)>0,  i = I,. .. ,rn}^(|.  Ve shall further assume the penalty 

factor   I = I[g(x)] , where   g = (g.,...,g    ), and that   h(r) = r,  so that the 

form of the interior penalty function is now   U(x, r) = f(x) + rl 1 g{x)] . 

Recall that   ifgCx)]   is continuous in   R      and, with   {x   } c R     and 

xk -y e(P - R0) ,  I[g(xk)] - + « . 

It is possible to assure the convexity of   U(x, r)   in R     by 

appropriately defining   I [g (x)].    The following lemma is immediate and 

yields a suitable definition. 

Lemma 5. 1.    Convexity of   irg(x)]. 

If   1(g)   is a convex dec-easing function of g for   g > 0,  and the 

g,(x)   are concave,  then   irg(x)]   is a convex function of   x   in   R  . 

The material in this section is essentially a summary of some of the results 
obtained in [5]  and is presented here for completeness.    Kvost importantly, 
this development shows how the penalty function can be used to take advantage 
of the convexity assumption to yield global and dual results. 

■ Ill [   ■!<--' 
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It is readily verified,  for example, that the functions   -Zing. 

and   Sl/g.   satisfy the conditions of the lerrrra.    Assuming the hypothesis 

of the lemn a holds, then   irg(x)]  is convex, and hence, 

U(x, r) = f(x) + r I [g(x)]   is convex in   E   ,  for   r >0 . 

The following theorem then holds for   U(x, r)   as defined.    Note that 

the ccnclusions are immediately implied by the interior-point auxiliary 

function Theoren- 3. I,  and Corollary 1 (Section 4) of that theorem,  once the 

convexity assumptions are introduced. 

Theorem 5. 1.    Interior Penalty Iv ethod Convergence to Solution of Convex 

Programming Problem [5]. 

If the solutions of the convex programming problem (C) are bounded, 

R    = (x|g.(x)>0,  i = I,. . . , m.} ^ 0,  1(g) is defined,  decreasing and 

convex in   g   when   g >0   and    fr. j^i 0,  then   U(x, r)   is a convex 

function in   R      for   r >0,  for   r.    small there exists   x(r, )   that 

minimizes   U(x, r. )   in   R   ,    every local n.inin'um. of   U(x, r. )   in 

R      is a global minimum in   R   ,  any limit point   x*   of    [x(r. )] 

solves    (C),    urx(rk).   rk]l v*,     [f Tx^)] ]| v* = minRf(x)f and 

I rx(r. )] |  i', where   T = + <=" if   x* e (R - R   ),  and    ^j < « if 

x*cR0,  and   r.lFxfr  )]-0. 

As expected fron-1 the previous general theorem..  Theorem 3. 1,  and 

the convexity assumption,  the minimizing points are now global and all limit 

points are global solutions of (C).    The monotone convergence results are 

also global.    These results follow fron   the convexity of   U(x, r)   and the 

well knov. n fact that any local solution o' the convex programming problem 

(C) is also a global solution.    Hence,  the com.pact set   A*   of local minima 

of (C) is the unique  set of global   minina, and the com.pact set S, utilized 
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for our previous local results, can be taken to be any compact act   S   such 

that   S0^^*. 

In effect, the role of convexity is essentially to make the previous 

theorem a "global11 one.    It should be mentioned that in [5]   a condition 

is given that regularizes   I [g (x)]  such that, for the convex problem the 

minimizing   x(r. )   exists for   all   r.   > 0,  not merely for   r.   small.    A 

similar condition has not been obtained for the general problem. 

A "dual" of problem (C) was formulated by V'olfe Til] , assuming 

the problem functions are once differentiable.    The Lagrangian function 
m 

associated with problem (C) is defined as   L(x, u) s f(x) -  Z u.g.(x).    The 
i=l    1 1 

dual of (C) is then defined as. 

(D) maximize   L(x,u) 

subject to   V L(x, u) = 0, u. 2: 0,  i = I,. . . , m . 

- 

1 

The dual relationship is defined in the sense given in the following two 

theorems. 

Theorem 5.2.    Primal-Dual Bounds. 

If (C) is a convex programming problem, y is any primal feasible 

point, and   (x.u) is any feasible point of (D), then  f(y) 2  L(x,u). 

Theorem 5. 3.    Equality of Primal-Dual Values at Optimal Solutions. 

If (C) is a convex programming problem and the Kuhn-Tucker 

constraint qualification (see Ref. [6}) holds at a solution x*   of 

(C), then there exists a solution (x*,u*) of (D) and   f(x*) = L(::*,u*) . 

The nondifferentiable form of (D) is given by assuming only continuity 

and replacing   V  Mx,u) = 0   by   L(x,u) = inf    Lf^.u).    The first dual theorem 

goes through easily with this change.    By making this oubstitution and 

_4_ 



assuming   R    = fx(g.(x) > 0,    i = 1,. . . , ml ^ ()) ,  it is possible to dispense 

with the differentiability requirement and the Kuhn-Tucker constraint 

qualification,  and arrive at a non-differentiable verpion of the second dual 

theorerr: given above,  assuming only continuity. 

In conjunction with the Kuhn-Tucker constraint qualification,  it is 

relevant to point out the fact that this qualification is satisfied providing 

the constraints are differentiable and convex, and the interior of the 

constraint region defined by the nonlinear constraints is nonempty [13]. 

Ve now turn briefly to the significant duality results that follow from 

the   U(x, r) method.    For this development, we give U additional structure, 
m 

and now assume that the penalty factor has the form   Z   I.[g.(x)].    The 
i=l   *    1 

result ?pplies to the nondifferentiable form of the dual problem, 

(D)   maximize   L(x, u) subject to L(x, u) = inf   L( f, u), u. ä 0, i = 1,. .. , m. 

Theorem 5.4.    Dual-Feasibility and Convergence for Interior-Point Methods [5]. 

Assume the conditions of Theorem 5.1.    If,  in addition,  each   I.(g.) 

is differentiable in   g.   when   g. > 0, then for   r.    small enough 

[x(r, ),u(r   ) ]   satisfies the constraints of   (D)   where 
aiiMxM u.(r, ) =  -r.     r  , i = 1,... ,m.    Furthermore, 

IKK eg. 

lim  _<DL[x(r ) , u(r. )] = v* = minRf(x)   so that all limit points of 

[rx(rk),  u(rk)]}   solve   (D). 

The definition of the quantities   u (r  )   and the result given above 
i     K 

is most readily appreciated by assuming the functions differentiable, 

differentiating   U(x, r)   directly,  and comparing the result to   V  L(x,u), which 
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would appear in the differentiable form of   (D). 

The above result is a significant one, not generally shared by other 

methods.    One very important application of it is that upper and lower 

bounds on the optimal value v* are generated with the determination   of 

each minimizing   x(r. ).    This is a direct consequence of the first dual 

theorem given above.    It provides a natural convergence criterion.    Also, 

the Lagrange multipliers are critically involved in providing optimality 

conditions.    In effect, the dual theorem provides an explicit relationship 

between   U(x> r)   and the Lagrangian   L(x,u) associated with problem (C). 

A parallel development for the exterior-point method for the convex 

problem is given in [5].    Again,  similar conditions are invoked on the 

form of   T(x,t), assuring its convexity.    The convergence theorem is 

essentially a "global" version of the general exterior-point theorem given 

in Section 3.    Analagous to the development for the   U(x, r) interioi- method, 

a condition is given in [5] that guarantees the existence of the minimum of 

T(x,t) for all   t >0 , for the convex   problem.    Finally, a comparable dual 

theorem is proved.    In view of the fact that the optimal value is approached 

from below in this method, the dual result provides only a lower bound on 

the optimal value. 

Recalling that   R    ^ (j)   is not  required for the feasible-exterior 

T(x,t) - function method, the above indicated results imply,  in particular, 

that the Kuhn-Tucker constraint qualification need not be satisfied for 

problem (C).    This means, when conditions assure that a minimizing 

sequence of   T(x,t, ) leads to a solution of the problem,  then we have a way 

of characterizing such a solution although the constraint qualification may 

not hold. 

^^M^JlMilMM ■  M         ■"Il1   ' 
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